Basic modal logic

The language of basic modal logic is that of propositional logic with two extra connectives, \square and \lozenge . Like negation (\neg) , they are *unary* connectives as they apply themselves to a single formula only. As done in Chapters 1 and 3, we write $p, q, r, p_3 \ldots$ to denote atomic formulas.

Definition 5.1 The formulas of basic modal logic ϕ are defined by the following Backus Naur form (BNF):

$$\phi ::= \bot \mid \top \mid p \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \to \phi) \mid (\phi \leftrightarrow \phi) \mid (\Box \phi) \mid (\Diamond \phi)$$

$$(5.1)$$

where p is any atomic formula.

Example formulas of basic modal logic are $(p \land \Diamond (p \rightarrow \Box \neg r))$ and $\Box ((\Diamond q \land \neg r) \rightarrow \Box p)$, having the parse trees shown in Figure 5.1. The following strings are *not* formulas, because they cannot be constructed using the grammar in (5.1): $(p\Box \rightarrow q)$ and $(p \rightarrow \Diamond (q \Diamond r))$.

This convention allows us to remove many sets of brackets, retaining them only to avoid ambiguity, or to override these binding priorities.